Supporting Information

Light-Triggered Reversible Supracolloidal Self-Assembly of Precision Gold Nanoclusters

Jose V. Rival,[†] Nonappa,[±] Edakkattuparambil Sidharth Shibu[†]f*

[†]Smart Materials Lab, Functional Materials Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi-630003, Tamil Nadu, India.

^{*f*}Academy of Scientific and Innovative Research (AcSIR)-CSIR, Ghaziabad-201002, Uttar Pradesh, India.

[±] Department of Applied Physics, Aalto University School of Science, Puumiehenkuja 2, Espoo, FI-02150, Finland.

* shibues@cecri.res.in or shibuchem@gmail.com ORCID: Shibu Sidharth: 0000-0003-3057-4198

This PDF file includes:

Figures S1-S17

Scheme 1 and 2

Table of Contents

Name	Description	Page No.
Scheme S1	Scheme for the synthesis of molecules $1-3$ (C_3 -AMT)	3
Figure S1	¹ H and ¹³ C NMR, LC-MS, and FT-IR spectra of molecule 1	3
Figure S2	¹ H and ¹³ C NMR, LC-MS, and FT-IR spectra of molecule 2	3
Figure S3	¹ H and ¹³ C NMR, LC-MS, and FT-IR spectra of molecule 3	4
Figure S4	Temporal absorption spectra of C_3 -AMT under 345 and 435 nm	4
	illuminations	
Figure S5	XPS spectra of $[Au_{25}(PET)_{18}]^{-}$ and $[Au_{25}(C_{3}-AMT)_{18}]^{-}$	4
Figure S6	Temporal absorption spectra of $[Au_{25}(C_3-AMT)_{18}]^{-}$ under 435 nm	5
	excitation	
Figure S7	Large area TEM images of $[Au_{25}(C_3-AMT)_{18}]^{-}$ self-assembly	5
	illuminated under 345 nm light for 120 min and 240 min	
Scheme 2	Mechanism for the dipole-induced self-assembly of $[Au_{25}(C_{3}-$	5
	AMT) ₁₈] ⁻ NCs and their possible arrangements in the superstructure	
Figure S8	Larger area TEM images of $[Au_{25}(C_3-AMT)_{18}]^{-1}$ superstructure	6
	disassembly illuminated under 435 nm light for 150 min and 240 min	
Figure S9	Photographs of NCs solution during the course of assembly and	6
	disassembly	
Figure S10	Temporal absorption spectra of self-assembled NCs recorded under	6
	dark conditions	
Figure S11	TEM images of $[Au_{25}(PET)_{18}]^{-}$ before and after light illumination	7
Figure S12	Temporal absorption spectra of trans NCs recorded under dark	7
	conditions	
Figure S13	TEM image of $[Au_{25}(C_3-AMT)_{18}]^-$ self-assembled dimer	7
	superstructures	
Figure S14	Elemental maps and EDS spectrum of $[Au_{25}(C_3-AMT)_{18}]^{-1}$	8
	superstructure	
Figure S15	Temporal DLS spectra of $[Au_{25}(C_3-AMT)_{18}]^{-}$ NCs during the light	8
	induced self-assembly and disassembly	
Figure S16	Cross-sectional views of the 3D reconstructed disc-like	9
	superstructure	
Figure S17	Dark-field scattering images of $[Au_{25}(C_3-AMT)_{18}]^{-1}$ superstructures	9
	and control sample (solvent alone)	

Scheme S1. Scheme for the synthesis of C₃-AMT (molecules 1-3). (a) HONO, 0 °C (b) 1,3-dibromopropane, K_2CO_3/KI , acetone, 80 °C (c) HMDST/TBAF, Distilled THF, -10 °C.

Figure S1. (A) ¹H and (B) ¹³C NMR, (C) LC-MS, and (D) FT-IR spectra of *molecule 1*.

Figure S2. (A) ¹H and (B) ¹³C NMR, (C) LC-MS, and (D) FT-IR spectra of *molecule* 2.

Figure S3. (A) ¹H and (B) ¹³C NMR, (C) LC-MS, and (D) FT-IR spectra of *molecule 3*.

Figure S4. (A and B) Temporal absorption spectra of C_3 -AMT illuminated under (A) 345 nm and (B) 435 nm light. A plot of OD at 345 nm *vs.* illumination time under 345 and 435 nm excitation shows reversible photoswitching (inset in Figure S4B).

Figure S5. (A-C) XPS spectra of (A) Au 4f, (B) S 2p, and (C) N 1s levels of $[Au_{25}(PET)_{18}]^{-}$ (pink), and $[Au_{25}(C_3-AMT)_{18}]^{-}$ (green).

Figure S6. Temporal absorption spectra of [Au₂₅(C₃-AMT)₁₈] NC under 435 nm excitation.

Figure S7. Larger area TEM images of $[Au_{25}(C_3-AMT)_{18}]^-$ NC self-assembly illuminated under 345 nm light for (A) 120 min and (B) 240 min.

Scheme 2. The mechanism for the dipole-induced self-assembly of $[Au_{25}(C_3-AMT)_{18}]^-$ NCs and their possible arrangements in the superstructure are represented. Corresponding TEM micrographs are shown.

Figure S8. Larger area TEM images of $[Au_{25}(C_3-AMT)_{18}]^-$ superstructures disassembly illuminated under 435 nm light for (A) 150 min and (B) 240 min.

Figure S9. Photographs of $[Au_{25}(C_3-AMT)_{18}]^-$ NC solution during switchable self-assembly under (A) visible light (B) UV light and (C) visible light. The color of NC solution changed from yellowish orange to reddishorange under UV light and *vice versa* under visible light.

Figure S10. Temporal absorption spectra of self-assembled NCs recorded under dark conditions (30-180 min).

Figure S11. TEM images of [Au₂₅(PET)₁₈]⁻ (A) before and (B) after 240 min light illumination (345 nm).

Figure S12. Temporal absorption spectra of trans NCs recorded under dark conditions (30-180 min).

Figure S13. (A) TEM image of $[Au_{25}(C_3-AMT)_{18}]^-$ self-assembled dimer. (B) Zoom-in and focused HRTEM image taken from the interface of dimer shows periodic self-assembly of NC.

Figure S14. (B and C) Elemental maps (B-gold and C-sulfur), and (D) EDS spectrum of a single $[Au_{25}(C_3-AMT)_{18}]^-$ superstructure (A) using scanning transmission electron microscopy (STEM).

Figure S15. DLS spectra of $[Au_{25}(C_3-AMT)_{18}]^-$ NCs during the light-induced (A-C) self-assembly (under 345 nm), and (D and E) disassembly (under 435 nm) at different time intervals.

Figure S16. Cross-sectional views of the 3D reconstructed disc-like superstructure of NC.

Figure S17. Dark-field scattering images collected from (A) $[Au_{25}(C_3-AMT)_{18}]^-$ superstructures and (B) control sample (solvent alone).